Theorem
Zsigmondy’s Theorem states that if $a > b ≥ 1$ are coprime integers and $n ≥ 2$, then there exists a prime divisor of $a^ n − b^ n$ that does not divide $a^ k − b^ k$ for all $1 ≤ k < n$, except in the following cases:
• $n = 2$ and $a + b$ is a power of $2$,
• $(a, b, n) = (2, 1, 6)$.
Example
Consider $(a, b, n) = (4, 2, 3)$. Then
$4^ 3 − 2 ^3 = 56$,
$4 ^2 − 2^ 2 = 12$,
$4^ 1 − 2^ 1 = 2$.
So one such nice prime would be $7$.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου