EisatoponAI

Your Daily Experience of Math Adventures

Welcome to EisatoponAI!

Τα άρθρα μας είναι διαθέσιμα και στα Αγγλικά 🇬🇧.
Our posts are also available in English.
Tap the English button at the top of each article.

Υδροθερμική συνάρτηση (IMO 2024, Πρόβλημα 6)

Έστω $\mathbb{Q}$ το σύνολο των ρητών αριθμών. Μία συνάρτηση $f : \mathbb{Q} \to \mathbb{Q}$ λέγεται υδροθερμική, αν ικανοποιείται η ακόλουθη ιδιότητα: για κάθε $x, y \in\mathbb{Q}$ ισχύει τουλάχιστον μία από τις ισότητες: 
$f(x+f(y))=f(x)+y$ 
ή 
$f(f(x)+y)=x+f(y)$. 
Να αποδείξετε ότι υπάρχει ακέραιος $c$ τέτοιος, ώστε για κάθε υδροθερμική συνάρτηση $f$ να υπάρχουν το πολύ $c$ διαφορετικοί ρητοί αριθμοί που γράφονται στη μορφή 
$f(r)+f(-r)$ 
για κάποιο ρητό αριθμό $r$, και να προσδιορίσετε την ελάχιστη δυνατή τιμή του $c$.
Ρώτησε το Math Oracle Mathematical Duel
Ανακάλυψε μαθηματική σοφία!

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου