EisatoponAI

Your Daily Experience of Math Adventures

Welcome to EisatoponAI!

Τα άρθρα μας είναι διαθέσιμα και στα Αγγλικά 🇬🇧.
Our posts are also available in English.
Tap the English button at the top of each article.

Μέγιστη απόσταση προσγείωσης σκιέρ

Ένα υλικό σημείο (ένα σκιέρ) κυλάει προς τα κάτω σε ένα παραβολικό εφαλτήριο με εξίσωση $$y = \dfrac{x^2}{4} - 2x + 8$$ ξεκινώντας από την αρχική θέση $(0,8)$, με αρχική ταχύτητα $v_0 = 0$.
Το εφαλτήριο μπορεί να κοπεί σε κάποιο σημείο. Nα υπολογιστεί η μέγιστη δυνατή απόσταση από το σημείο $(0,0)$ (την αρχή του επιπέδου) μέχρι το σημείο προσγείωσης του σκιέρ.
Δηλαδή, να βρούμε την απόσταση που θα διανύσει το σκιέρ μέχρι το σημείο προσγείωσης και να υπολογίσουμε τη μέγιστη τιμή αυτής της απόστασης.
Ρώτησε το Math Oracle Mathematical Duel
Ανακάλυψε μαθηματική σοφία!

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

🧠 Ask the Math Oracle 🎲 Random Puzzle ✍️ Inspire me