\[ \prod_{n = 1}^\infty \left( 1 + \frac{1}{n^2} \right) = \left( 1 + \frac{1}{1} \right) \times \left( 1 + \frac{1}{4} \right) \times \left( 1 + \frac{1}{9} \right) \times \cdots \] \[ = \frac{\sinh \pi}{\pi} = \frac{e^\pi - e^{-\pi}}{2\pi} \]
\[
\prod_{n = 1}^\infty \left( 1 + \frac{1}{n^2} \right)
= \prod_{n = 1}^\infty \frac{n^2 + 1}{n^2}
\]
\[
= \prod_{n = 1}^\infty \frac{(n - i)(n + i)}{(n - 0)(n - 0)}
\quad \text{(Difference of Two Squares)}
\]
\[
= \frac{\Gamma(1) \Gamma(1)}{\Gamma(1 + i) \Gamma(1 - i)}
\quad \text{(Infinite Product Formula)}
\]
\[
= \frac{\Gamma(1) \Gamma(1)}{i \Gamma(i) \Gamma(1 - i)}
\quad \text{(Gamma Difference Equation)}
\]
\[
= \frac{0! \times 0! \sin(i\pi)}{i\pi}
\quad \text{(Gamma Function Extends Factorial, Euler's Reflection Formula)}
\]
\[
= \frac{i \sinh{\pi}}{i\pi}
\quad \text{(Hyperbolic Sine Definition)}
\]
\[
= \frac{\sinh{\pi}}{\pi}
= \frac{e^\pi - e^{-\pi}}{2\pi}
\]
Από wikipedia:
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου