Eisatopon Math AI Challenges
Your Daily Experience of Math Adventures
Τετάρτη 21 Μαΐου 2025
Το ολοκλήρωμα της ημέρας
Να αποδειχθεί ότι: $$\int_{0}^{1} (\ln x)^2 \dfrac{dx}{1 + 2x \cos t + x^2} = \dfrac{t(\pi^2 - t^2)}{6 \sin t}.$$
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Νεότερη ανάρτηση
Παλαιότερη Ανάρτηση
Αρχική σελίδα
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
>
↑
.related-posts { margin-top: 32px; padding: 20px; border: 1px solid #ddd; border-radius: 12px; background-color: #f9f9f9; box-shadow: 0 2px 6px rgba(0,0,0,0.05); } .related-posts .rp-title { font-size: 20px; font-weight: 700; margin-bottom: 12px; color: #333; } .related-posts .rp-list { list-style: none; padding-left: 0; margin: 0; } .related-posts .rp-list li { margin: 8px 0; padding-left: 20px; position: relative; transition: background-color 0.3s ease; } .related-posts .rp-list li::before { content: "📌"; position: absolute; left: 0; top: 0; } .related-posts .rp-list li:hover { background-color: #eef; border-radius: 6px; } .crml-btn-stop { background-color: #FF6C00 !important; color: #fff !important; }
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου