-
a) Solve the inequality \[ (\sqrt{x+5}-\sqrt{x-3})\left(1+\sqrt{x^{2}+2x-15}\right) \ge 8. \]
b) Solve the system of equations \[ \begin{cases} 81x^{3}y^{2} - 81x^{2}y^{2} + 33xy^{2} - 29y^{2} = 4,\\[4pt] 25y^{3} + 9x^{2}y^{3} - 6xy^{3} - 4y^{2} = 24. \end{cases} \]
-
Find all real numbers \(x\) satisfying \[ x + \left[\frac{x}{6}\right] = \left[\frac{x}{2}\right] + \left[\frac{2x}{3}\right], \] where \([t]\) denotes the greatest integer not exceeding \(t\).
-
In a convex quadrilateral \(ABCD\), suppose that \(CD = DA\) and \(\angle DAB = \angle ABC < 90^\circ\). The line through \(D\) and the midpoint of \(BC\) meets line \(AB\) at \(E\). Prove that \(\angle BEC = \angle DAC\).
-
Consider \(100\) pairwise distinct sets satisfying:
- For any \(10\) sets among them, there exist two sets \(A, B\) such that \(A \subset B\).
- For any three sets \(A, B, C\) among them with \(A \supset B\) and \(A \supset C\), we have \(B \subset C\) or \(C \subset B\).
Prove that one can choose \(12\) sets \(A_1, A_2, \ldots, A_{12}\) among the given \(100\) sets such that \[ A_1 \subset A_2 \subset \cdots \subset A_{12}. \]
-
Let \(a, b, c\) be positive real numbers satisfying \[ a + 2b + 3c \ge 20. \] Find the minimum value of \[ L = a + b + c + \frac{3}{a} + \frac{9}{2b} + \frac{4}{c}. \]
Welcome to EisatoponAI!
Τα άρθρα μας είναι διαθέσιμα και στα Αγγλικά 🇬🇧.
Our posts are also available in English.
Tap the English button at the top of each article.
Κατηγορίες

Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου