EisatoponAI

Your Daily Experience of Math Adventures

Challenging Systems of Equations – 31 Mathematical Problems from Around the World


Challenging Systems of Equations 

Μια συλλογή με προχωρημένα προβλήματα συστημάτων εξισώσεων. Δοκιμάστε τα όλα!

  1. $$\begin{cases} 3\!\left(x+\dfrac1x\right)=4\!\left(y+\dfrac1y\right)=5\!\left(z+\dfrac1z\right)\\[4pt] xy+yz+zx=1\\ (x,y,z\in\mathbb R^{*}) \end{cases}$$
  2. $$\begin{cases} y+z+yz=11\\ z+x+zx=7\\ x+y+xy=5\\ (x,y,z\in\mathbb R) \end{cases}$$
  3. $$\begin{cases} x+2y=\sqrt3\\ 2x\sqrt{1-4y^2}+4y\sqrt{1-x^2}=\sqrt3\\ (x,y\in\mathbb R) \end{cases}$$
  4. $$\begin{cases} x^2+y^2=z+3\\ y^2+z^2=x+3\\ z^2+x^2=y+3\\ (x,y,z\in\mathbb R) \end{cases}$$
  5. $$\begin{cases} x+y+z=1\\ \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}=2\\ (x,y,z\ge0) \end{cases}$$
  6. $$\begin{cases} x^2+y^2=1\\ z^2+t^2=1\\ xz+yt=0\\ (2x+z)(2y+t)=2\\ (x,y,z,t\in\mathbb R) \end{cases}$$
  7. $$\begin{cases} x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\\ (1-x)(1+y)=2\\ (x,y\in\mathbb R) \end{cases}$$
  8. $$\begin{cases} x^2-y^2-w=0\\ w^2-t^2-x=0\\ t+2xy=0\\ y+2wt=0\\ (x,y,w,t\in\mathbb R) \end{cases}$$
  9. $$\begin{cases} x+y+z=xy+yz+zx+1\\ x^{2013}+y^{2013}+z^{2013}=2\\ (x,y,z\in[0,1]) \end{cases}$$
  10. $$\begin{cases} x(x+1)=y\\ y(y+1)=z\\ z(z+1)=x\\ (x,y,z\in\mathbb R) \end{cases}$$
  11. $$\begin{cases} (x+1)(x+4)=y\\ (y+1)(y+4)=z\\ (z+1)(z+4)=x\\ (x,y,z\in\mathbb R) \end{cases}$$
  12. $$\begin{cases} x^{2013}+y^{2013}=x^3+y^3\\ x^{2014}+y^{2014}=x^4+y^4\\ (x,y\in\mathbb R) \end{cases}$$
  13. $$\begin{cases} x^2-y+z=1\\ x+y^2+z^2=3\\ xy+yz-zx=1\\ (x,y,z\in\mathbb Q) \end{cases}$$
  14. $$\begin{cases} x+y+z=5\\ xy+yz+zx=x+7\\ (x,y,z\in\mathbb R) \end{cases}$$
  15. $$\begin{cases} x=\sqrt{2y+3}\\ y=\sqrt{2z+3}\\ z=\sqrt{2x+3}\\ (x,y,z\in\mathbb R) \end{cases}$$
  16. $$\begin{cases} \dfrac{2}{1+x}+2\sqrt{\dfrac{2y}{1+y}}=3\\[6pt] \dfrac{2}{1+y}+2\sqrt{\dfrac{2z}{1+z}}=3\\[6pt] \dfrac{2}{1+z}+2\sqrt{\dfrac{2x}{1+x}}=3\\[6pt] (x,y,z\in(0,+\infty)) \end{cases}$$
  17. $$\begin{cases} z\,(2^x+3^y)=5\\[2pt] \dfrac{2^y+3^x}{z}=5\\[6pt] x+y+2z=z^2+3\\ (x,y,z\in\mathbb R) \end{cases}$$
  18. $$\begin{cases} \dfrac1x+\dfrac{1}{y+z}=\dfrac65\\[6pt] \dfrac1y+\dfrac{1}{z+x}=\dfrac34\\[6pt] \dfrac1z+\dfrac{1}{x+y}=\dfrac23\\[6pt] (x,y,z\in\mathbb R) \end{cases}$$
  19. $$\begin{cases} 3x+y+z=4\\ xy+yz+zx=-1\\ x^2+y^2+z^2=6\\ (x,y,z\in\mathbb R) \end{cases}$$
  20. $$\begin{cases} 2^x+3^y=5\\ 2^y+3^x=5\\ (x,y>0) \end{cases}$$
  21. $$\begin{cases} \dfrac{y}{x}-9xy=2\\[6pt] \dfrac{z}{y}-9yz=6\\[6pt] \dfrac{3x}{z}-3zx=2\\[6pt] (x,y,z\in\mathbb R) \end{cases}$$
  22. $$\begin{cases} x+y+z=3\\ x^3+y^3+z^3=3\\ (x,y,z\in\mathbb Z) \end{cases}$$
  23. $$\frac{x(x+y)}{y+z}+y=\frac{z(z+x)}{x+y}+x=\frac{y(y+z)}{z+x}+z,\qquad (x,y,z>0)$$
  24. $$\begin{cases} 36x^2y-27y^3=8\\ 4x^3-27xy^2=4\\ (x,y\in\mathbb R) \end{cases}$$
  25. $$\begin{cases} x+y+z=\dfrac{1}{3}\\[6pt] 2(1-x)(1-y)(1-z)=(1+x)(1+y)(1+z)\\ (x,y,z\in[0,+\infty)) \end{cases}$$
  26. $$\begin{cases} x^2+5x+3=y\\ y^2+5y+3=z\\ z^2+5z+3=x\\ (x,y,z\in\mathbb R) \end{cases}$$
  27. $$\begin{cases} x^3=x+3y+12\\ y^3=-y+4z+6\\ z^3=9z+2x-32\\ (x,y,z\in\mathbb R) \end{cases}$$
  28. $$\begin{cases} 2^x=2y\\ 2^y=2x\\ (x,y\in\mathbb R) \end{cases}$$
  29. $$\begin{cases} 3^{\,x-y}=\dfrac{6x+3}{x+y+2}\\[8pt] \bigl((x^3+x)^3\bigr)+4(y+1)^3=10x+2y+2\\ (x,y\in[0,+\infty)) \end{cases}$$
  30. $$\begin{cases} \sqrt{6x^2+3y^2}+\sqrt{6y^2+3z^2}+\sqrt{6z^2+3x^2}=6039\\ x+y+z=2013\\ (x,y,z\in\mathbb R) \end{cases}$$
  31. $$\begin{cases} x_1+x_2+\cdots+x_n=0\\ 3^{x_1}+3^{x_2}+\cdots+3^{x_n}=3\\ (x_1,\ldots,x_n\in\mathbb R) \end{cases}$$
Ρώτησε το Math Oracle Mathematical Duel
Ανακάλυψε μαθηματική σοφία!

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

🧠 Ask the Math Oracle 🎲 Random Puzzle ✍️ Inspire me