EisatoponAI

Your Daily Experience of Math Adventures

Welcome to EisatoponAI!

Τα άρθρα μας είναι διαθέσιμα και στα Αγγλικά 🇬🇧.
Our posts are also available in English.
Tap the English button at the top of each article.

Ανισότητα επιλογής

Έστω θετικοί πραγματικοί αριθμοί $x, y, z$ που ικανοποιούν τις ισότητες
$xyz+xy+yz+zx = x+y+z+1$. 
Να αποδειχθεί ότι 
\[ \frac{1}{3} \left( \sqrt{\frac{1+x^2}{1+x}} + \sqrt{\frac{1+y^2}{1+y}} + \sqrt{\frac{1+z^2}{1+z}} \right) \le \left( \frac{x+y+z}{3} \right)^{5/8}.\]
USA Team Selection Test 2012
Ρώτησε το Math Oracle Mathematical Duel
Ανακάλυψε μαθηματική σοφία!

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

🏆 IMO Problem Bank: 67 Years of International Mathematical Olympiad Problems (1959–2025) | Free Online Archive
Τράπεζα Θεμάτων Πανελλαδικών Εξετάσεων
Τράπεζα Θεμάτων Πανελλαδικών Εξετάσεων