EisatoponAI

Your Daily Experience of Math Adventures

Welcome to EisatoponAI!

Τα άρθρα μας είναι διαθέσιμα και στα Αγγλικά 🇬🇧.
Our posts are also available in English.
Tap the English button at the top of each article.

Το άνθος του Θυμαρίδα

Ο Ιάμβλιχος στο έργο του με τίτλο Αριθμητική εισαγωγή υποστηρίζει ότι ο Θυμαρίδας (400 - 350 π.Χ.) εργάστηκε με τις ταυτόχρονες εξισώσεις. Συγκεκριμένα, δημιούργησε τον διάσημο κανόνα γνωστό ως "το άνθος του Θυμαρίδα" ή "το λουλούδι του Θυμαρίδα" το οποίο υποστηρίζει ότι: 
 
Αν το άθροισμα n μεταβλητών που δίνεται και επίσης το άθροισμα του κάθε ζεύγους που περιέχουν μία συγκεκριμένη μεταβλητή, τότε αυτή η μεταβλητή ισούται με το  $\dfrac{1}{n-2}$  της διαφοράς μεταξύ των αθροισμάτων αυτών των ζευγών και του αρχικού δοσμένου αθροίσματος ή χρησιμοποιώντας μία σύγχρονη αντίληψη, η λύση του παρακάτω συστήματος $n$ γραμμικών εξισώσεων σε $n$ αγνώστους, 
$x + x_1 + x_2 + ... + x_{n-1} = s$ 
$x + x_1 = m_1$ 
$x + x_2 = m_2$
$x + x_{n-1} = m_{n-1}$ 
είναι 
${\displaystyle x={\cfrac {(m_{1}+m_{2}+...+m_{n-1})-s}{n-2}}={\cfrac {(\sum _{i=1}^{n-1}m_{i})-s}{n-2}}}$ 
Ο Ιάμβλιχος συνεχίζει για να περιγράψει το πως ορισμένα συστήματα γραμμικών εξισώσεων που δεν έχουν αυτή τη μορφή μπορούν αναχθούν σε αυτή τη μορφή. 
Από wikipedia.
Ρώτησε το Math Oracle Mathematical Duel
Ανακάλυψε μαθηματική σοφία!

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

🧠 Ask the Math Oracle 🎲 Random Puzzle ✍️ Inspire me