Algebra
A1. Find all functions \(f:\mathbb{R}\to\mathbb{R}\) such that for all real \(x,y\): \[ f(x+y)+f(x-y)=2f(x)f(y). \] S
A2. Let \(x_1,x_2,\dots,x_n>0\). Prove \[ \frac{1}{1+x_1}+\frac{1}{1+x_2}+\cdots+\frac{1}{1+x_n} \ge\frac{n}{1+\sqrt[n]{x_1x_2\cdots x_n}}. \] S
Combinatorics
C1. A tile consists of five unit squares. For a \(5\times n\) rectangle, let \(T_n\) be the number of tilings. Show that \[ T_{2n}=2\cdot3^{n-1},\qquad T_{2n+1}=0. \] S
C2. Let \(S\) be a finite set of integers. Show that there exists a subset \(T\subseteq S\) such that \[ \left|\sum_{t\in T} t\right|\le\frac{1}{2}\sum_{s\in S}|s|. \] S
C3. Let \((x_1,\dots,x_n)\) be real numbers such that \(\lfloor x_i\rfloor\le i-1\le\lceil x_i\rceil\). Show that there exists a permutation \((p_1,\dots,p_n)\) with \(p_i\le x_i\). S
Geometry
G1. In triangle \(ABC\), let \(O\) be the circumcenter, \(G\) the centroid, and \(H\) the orthocenter. Prove \[ AH^2+BH^2+CH^2=9OG^2. \] S
G2. Let \(ABCD\) be a convex quadrilateral with perpendicular diagonals. Let \(P\) be the foot from \(B\) to \(AD\). Show that the circumcircle of triangle \(BPC\) has certain invariant properties. S
Number Theory
N1. Prove that there are infinitely many primes \(p\) with \(p\equiv1\pmod{4}\). S
N2. Let \(n\) be a positive integer not divisible by 3. Show there exists a multiple of \(n\) whose digit sum equals 1986. S

Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου