Theorem
Let $A_i, i = 1, 2,..., 6$, be six points on a circle. Taking subscripts modulo $6$, we denote, for $i = 1, 2,..., 6$, the intersection of the lines $A_iA_{i+1}$ and $A_{i+2}A_{i+3}$ by $B_{i+3}$, and the circumcenter of the triangle AiAi+1Bi+2 by $C_{i+3}$. The lines $C_1C_4, C_2C_5, C_3C_6$ are concurrent.
Read more here.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου