EisatoponAI

Your Daily Experience of Math Adventures

Welcome to EisatoponAI!

Τα άρθρα μας είναι διαθέσιμα και στα Αγγλικά 🇬🇧.
Our posts are also available in English.
Tap the English button at the top of each article.

Από τον Fermat στον Euler: Η Ιστορία ενός Μαθηματικού Θεωρήματος

Παρατηρώντας ένα αρχικό τμήμα από πρώτους αριθμούς μεγαλύτερους του 2 (3, 5, 7, 11, 13, 17, 19, ...), διαπιστώνουμε ότι κάποιοι από αυτούς –όπως οι 5, 13 και 17– μπορούν να εκφραστούν ως άθροισμα δύο τετραγώνων:

  • 5 = 1² + 2²

  • 13 = 2² + 3²

  • 17 = 1² + 4²


Αντίθετα, άλλοι όπως οι 3, 7 και 11 δεν έχουν αυτήν την ιδιότητα.

Πώς μπορούμε να ξεχωρίσουμε αυτούς τους πρώτους αριθμούς χωρίς να δοκιμάζουμε κάθε περίπτωση ξεχωριστά;

📜 Ο Pierre Fermat (1601–1665), σε επιστολή του στον Marin Mersenne τα Χριστούγεννα του 1640, διατύπωσε μια εκπληκτική πρόταση:

«Κάθε πρώτος αριθμός της μορφής 4n + 1 μπορεί να γραφεί ως άθροισμα δύο τετραγώνων.»

Την απόδειξη της πρότασης ανέλαβε αργότερα ο Leonhard Euler, τιμώντας έτσι τον Fermat. Σήμερα είναι γνωστή ως Θεώρημα των Fermat–Euler.

🔍 Άρα, κάθε πρώτος αριθμός που αφήνει υπόλοιπο 1 όταν διαιρεθεί με το 4 (δηλαδή είναι της μορφής 4n + 1), μπορεί να γραφεί ως $a^2 + b^2$, ενώ οι πρώτοι της μορφής 4n + 3 δεν μπορούν.

Ρώτησε το Math Oracle Mathematical Duel
Ανακάλυψε μαθηματική σοφία!

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

🧠 Ask the Math Oracle 🎲 Random Puzzle ✍️ Inspire me