EisatoponAI

Your Daily Experience of Math Adventures

Welcome to EisatoponAI!

Τα άρθρα μας είναι διαθέσιμα και στα Αγγλικά 🇬🇧.
Our posts are also available in English.
Tap the English button at the top of each article.

A Convergence Problem for a Recursive Nonnegative Sequence

Recursive inequality defining a nonnegative sequence

Σύγκλιση σειράς από αναδρομικά ορισμένη ακολουθία

Έστω a1, a2, a3, … μια ακολουθία μη αρνητικών πραγματικών αριθμών, η οποία ικανοποιεί για κάθε ακέραιο n ≥ 1 την ανισότητα

$$a_{n+2} \leq \frac{a_{n+1} + a_n}{n+2}$$

Η συνθήκη αυτή συνδέει κάθε όρο της ακολουθίας με τους δύο προηγούμενους, αλλά με έναν συντελεστή που φθίνει καθώς το n αυξάνεται. Η φθίνουσα αυτή επίδραση παίζει καθοριστικό ρόλο στη συνολική συμπεριφορά της ακολουθίας.

Να αποδειχθεί ότι η άπειρη σειρά

$$\sum_{n=1}^{\infty} a_n$$

είναι συγκλίνουσα.

Το πρόβλημα αποτελεί χαρακτηριστικό παράδειγμα όπου μια σχετικά ήπια αναδρομική ανισότητα αρκεί για να επιβάλει ισχυρό έλεγχο στο άθροισμα ολόκληρης της ακολουθίας, και ανήκει στον πυρήνα της θεωρίας σύγκλισης σειρών με εξαρτημένους όρους.

Ρώτησε το Math Oracle Mathematical Duel
Ανακάλυψε μαθηματική σοφία!

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου