Τετάρτη 30 Μαΐου 2012

▪ Uzbekistan Mathematical Olympiad 2012

1. Given a digits {} . Find the number of numbers of 6 digits which cantain or 's digit and they is permulated (For example 137456 and 314756 is one numbers). 
2. For any positive integers and satisfying the equation , prove that
 
3. Given is not isosceles triangle. and its incenter and circumcenter. The incircle tangents to at a point . The circumcircle of intersects at . Prove that , where is radius of incircle of
4. Given and positive real numbers with . Then prove that
5. Given points and lie a circle. . and incenters of . midpoints of arcs . Then prove that are concurrent.
Πηγή: artofproblemsolving

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

>
.related-posts { margin-top: 32px; padding: 20px; border: 1px solid #ddd; border-radius: 12px; background-color: #f9f9f9; box-shadow: 0 2px 6px rgba(0,0,0,0.05); } .related-posts .rp-title { font-size: 20px; font-weight: 700; margin-bottom: 12px; color: #333; } .related-posts .rp-list { list-style: none; padding-left: 0; margin: 0; } .related-posts .rp-list li { margin: 8px 0; padding-left: 20px; position: relative; transition: background-color 0.3s ease; } .related-posts .rp-list li::before { content: "📌"; position: absolute; left: 0; top: 0; } .related-posts .rp-list li:hover { background-color: #eef; border-radius: 6px; } .crml-btn-stop { background-color: #FF6C00 !important; color: #fff !important; }