Δευτέρα 8 Απριλίου 2013

▪ Dynamic Construction - Cuboctahedron

Dynamic Construction
The key-step of construction
Illustration
  • Start with a regular octahedron.
  • Take the midpoints H, I, and G of segments AB, AC, and CD, respectively.
  • Create two equ-triangles around line L through points H and G.
  • Create a regular hexagon around line L through point I.
  
  • Create a convex polyhedron OEHIF.
  • Take point J by central symmetry through point H of point F.
  • Create an arc FJK.
  • Create line M that is perpendicular to segments AB and OH.
  • Take a movable point P on arc FJK.
  • Rotate the convex polyhedron OEHIF around line M mapping point F towards point P, then we get convex polyhedron R.
  • Rotate R around line L mapping point H towards point Y to get convex polyhedron S.
  • Rotate R around line L mapping point H towards point E to get convex polyhedron T.
 
  • Create three polyhedrons U, V, and W by central symmetry through point H of polyhedrons R, S, and  T, respectively.
  • Please move point P from point F to point K; then we getCuboctahedron.
  
Πηγή: apollonius

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

>
.related-posts { margin-top: 32px; padding: 20px; border: 1px solid #ddd; border-radius: 12px; background-color: #f9f9f9; box-shadow: 0 2px 6px rgba(0,0,0,0.05); } .related-posts .rp-title { font-size: 20px; font-weight: 700; margin-bottom: 12px; color: #333; } .related-posts .rp-list { list-style: none; padding-left: 0; margin: 0; } .related-posts .rp-list li { margin: 8px 0; padding-left: 20px; position: relative; transition: background-color 0.3s ease; } .related-posts .rp-list li::before { content: "📌"; position: absolute; left: 0; top: 0; } .related-posts .rp-list li:hover { background-color: #eef; border-radius: 6px; } .crml-btn-stop { background-color: #FF6C00 !important; color: #fff !important; }