Θεωρούμε τις συναρτήσεις
με



α) Να αποδείξετε ότι η
είναι γνησίως αύξουσα στο 


β) Να βρείτε το σύνολο τιμών της
.

γ) Να αποδείξετε ότι η
έχει άπειρα κρίσιμα σημεία.

δ) Να αποδείξετε ότι ισχύει

για κάθε 

ε) Να αποδείξετε ότι η
έχει μοναδική ρίζα
, η οποία βρίσκεται στο διάστημα 



στ) Να αποδείξετε ότι για το εμβαδόν
του χωρίου, το οποίο περικλείεται από την
και τους άξονες
ισχύει




Για το πρώτο ερώτημα (αυτό πρόλαβα).
ΑπάντησηΔιαγραφήΈστω η συνάρτηση φ(χ)=1+xe^x-e^x+x^2e^x.
Η συγκεκριμένη συνάρτηση στο διάστημα [-3,+άπειρο) έχει ελάχιστο το φ(0)=0.
Ισχύει ότι f΄(x)=φ(συνx) με -1==0 και επομένως f΄(x)>=0.
Η ισότητα ισχύει για x=κπ+π/2 (όπου συνx=0)
δλδ f΄(x)>0 για x διαφορετικό από το κπ+π/2 με την f όμως να είναι συνεχής στο R.
Άρα η f είναι γνησίως αύξουσα στο R.